[1] |
黄启灏, 靳国旺, 熊新, 等. 通道剪枝与知识蒸馏相结合的轻量化SAR目标检测[J]. 测绘学报, 2024, 53(4): 712-723. DOI:.
doi: 10.11947/j.AGCS.2024.20220605
|
|
HUANG Qihao, JIN Guowang, XIONG Xin, et al. Lightweight SAR target detection based on channel pruning and knowledge distillation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 712-723. DOI:.
doi: 10.11947/j.AGCS.2024.20220605
|
[2] |
董志鹏. 基于卷积神经网络的高分辨率遥感影像目标检测方法研究[J]. 测绘学报, 2023, 52(9): 1613. DOI:.
doi: 10.11947/j.AGCS.2023.20220234
|
|
DONG Zhipeng. Research on object detection in high resolution remote sensing imagery based on convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1613. DOI:.
doi: 10.11947/j.AGCS.2023.20220234
|
[3] |
CHEN Chen, LI Shuangjiang, XU Yongyang, et al. Correg-Yolov3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 51-61.
|
[4] |
SUN Long, WU Tao, SUN Guangcai, et al. Object detection research of SAR image using improved faster region-based convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28.
|
[5] |
XUE M, WU Y, ZHANG Y, et al. Dataset authorization control: protect the intellectual property of dataset via reversible feature space adversarial examples[J]. Applied Intelligence, 2023, 53(6): 7298-7309.
|
[6] |
朱长青. 地理数据数字水印和加密控制技术研究进展[J]. 测绘学报, 2017, 46(10): 1609-1619. DOI:.
doi: 10.11947/j.AGCS.2017.20170301
|
|
ZHU Changqing. Research progresses in digital watermarking and encryption control for geographical data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1609-1619. DOI:.
doi: 10.11947/j.AGCS.2017.20170301
|
[7] |
ZHU P, JIANG Z, ZHANG J, et al. Remote sensing image watermarking based on motion blur degeneration and restoration model[J]. Optik, 2021, 248: 168018.
|
[8] |
YUAN Guanghui, HAO Qi. Digital watermarking secure scheme for remote sensing image protection[J]. China Communications, 2020, 17(4): 88-98.
|
[9] |
LI Y, ZHU M, YANG X, et al. Black-box dataset ownership verification via backdoor watermarking[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2318-2332.
|
[10] |
GU T, LIU K, DOLAN-GAVITT B, et al. Badnets: evaluating backdooring attacks on deep neural networks[J]. IEEE Access, 2019, 7: 47230-47244.
|
[11] |
LI Y, JIANG Y, LI Z, et al. Backdoor learning: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022: 35(1): 5-22.
|
[12] |
LI Y, BAI Y, JIANG Y, et al. Untargeted backdoor watermark: towards harmless and stealthy dataset copyright protection[C]//Proceedings of 2022 Conference on Neural Information Processing Systems. New Orleans: Curran Associates, 2022: 13238-13250.
|
[13] |
HE Y, SHEN Z, CUI P. Towards non-IID image classification: a dataset and baselines[J]. Pattern Recognition, 2021, 110: 107383.
|
[14] |
郭晶晶, 刘玖樽, 马勇, 等. 基于模型水印的联邦学习后门攻击防御方法[J]. 计算机学报, 2024, 47(3): 662-676.
|
|
GUO Jingjing, LIU Jiuzun, MA Yong, et al. Defense method against backdoor attacks in federated learning based on model watermarking[J]. Journal of Computer Research and Development, 2024, 47(3): 662-676.
|
[15] |
DONG L, QIU J, FU Z, et al. Stealthy dynamic backdoor attack against neural networks for image classification[J]. Applied Soft Computing, 2023, 149: 110993.
|
[16] |
SAHA A, SUBRAMANYA A, PIRSIAVASH H. Hidden trigger backdoor attacks[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020: 11957-11965.
|
[17] |
LI Y, LI Y, WU B, et al. Invisible backdoor attack with sample-specific triggers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 16463-16472.
|
[18] |
CHAN S H, DONG Y, ZHU J, et al. Baddet: backdoor attacks on object detection[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer Nature, 2022: 396-412.
|
[19] |
LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
|
[20] |
CHENG G, HAN J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28.
|
[21] |
WANG C, BAI X, WANG S, et al. Multiscale visual attention networks for object detection in VHR remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(2): 310-314.
|
[22] |
LONG Y, GONG Y, XIAO Z, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
|
[23] |
XIAO Z, LIU Q, TANG G, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644.
|
[24] |
ZOU Z, SHI Z. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2017, 27(3): 1100-1111.
|
[25] |
WU X, SAHOO D, HOI S C H. Recent advances in deep learning for object detection[J]. Neurocomputing, 2020, 396: 39-64.
|
[26] |
TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: full training or fine tuning?[J]. IEEE transactions on medical imaging, 2016, 35(5): 1299-1312.
|
[27] |
CETINIC E, LIPIC T, GRGIC S. Fine-tuning convolutional neural networks for fine art classification[J]. Expert Systems with Applications, 2018, 114: 107-118.
|
[28] |
BLALOCK D, GONZALEZ O J J, FRANKLE J, et al. What is the state of neural network pruning?[C]//Proceedings of the 3th Conference on Machine Learning and Systems. Austin: [s.n.], 2020: 129-146.
|
[29] |
张玉, 武海, 林凡超, 等. 图像识别中的深度学习模型剪枝技术[J]. 南京理工大学学报, 2023, 47(5): 699-707.
|
|
ZHANG Yu, WU Hai, LIN Fanchao, et al. Pruning techniques for deep learning models in image recognition[J]. Journal of Nanjing University of Science and Technology, 2023, 47(5): 699-707.
|
[30] |
KAVIANI S, SHAMSHIRI S, SOHN I. A defense method against backdoor attacks on neural networks[J]. Expert Systems with Applications, 2023, 213: 118990.
|
[31] |
QIU H, ZENG Y, GUO S, et al. Deepsweep: an evaluation framework for mitigating DNN backdoor attacks using data augmentation[C]//Proceedings of the 16th ACM Asia Conference on Computer and Communications Security. Hong Kong: ACM Press, 2021: 363-377.
|
[32] |
LI Y, LYU X, KOREN N, et al. Anti-backdoor learning: training clean models on poisoned data[EB/OL] [2023-11-05]. https://proceedings.neurips.cc/paper/2021/hash/7d38b1e9bd793d3f45e0e212a729a93c-Abstract.html.
|
[33] |
LIU Y, FAN M, CHEN C, et al. Backdoor defense with machine unlearning[C]//Proceedings of the 41th IEEE Conference on Computer Communications. London: IEEE, 2022: 280-289.
|
[34] |
HUANG Kunzhe, LI Yiming, WU Baoyuan, et al. Backdoor defensevia decoupling the training process[EB/OL]. [2022-12-22]. https://arxiv.org/abs/2202.03423v1.
|
[35] |
ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
|
[36] |
YANG X, YAN J, LIAO W, et al. Scrdet++: detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 2384-2399.
|